New Insights in Neural Architecture Search: From Architecture
Embeddings to Learning Curve Extrapolations

Shen Yan
Michigan State University

Dec 3, 2021

Outline

e Background of NAS
o Search Space and Architecture Encodings
o Search Algorithms and Performance Estimations

e A Study on Neural Architecture Representations
o Why Decouples Architecture Representations and Search Algorithms
o Visualizations and Analysis
o From Encoding Structures of Neural Networks to Computations

e Speedy Performance Estimation via Learning Curve Extrapolation
o Create a Multi-Fidelity Surrogate Benchmark for Evaluating Anytime NAS algorithms
o Speedy Estimations via Partial Curve Extrapolations

Neural Architecture Search (NAS) Pipeline

3 Sampled
- h Architecture a Performance
earc . .
Search Alsorithm > Estimation
Space & < Strategy
- Performance

Estimation of a

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

—
—

Search
Space

v

Search Space

Set of Operations:

* |dentity

* 3x3 convolution

e 1x1 convolution

* 3x3 max pooling
e skip connection

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, Frank Hutter., NAS-Bench-101: Towards Reproducible Neural Architecture Search, JMLR 2019

Search Algorithm + Performance Evaluation

—
v
Search Search
Space Algorithm
~— N

e.g. Random Search, Evolution,
Reinforcement Learning, Bayesian
Optimization, One-shot (supernet)

Search Algorithm + Performance Evaluation

—
S

Search
Space

¥/

Performance
Search

Evaluation

Algorithm
Strategy

Performance of a

A

Accuracy, FLOPs,
Hardware-related metrics
e.g., latency, power consumption

Search Algorithm + Performance Evaluation

— .
> a .
Performance
Search Evaluation
Space <
Strategy
Performance of a
¥/

A

Accuracy, FLOPs,
Hardware-related metrics
e.g., latency, power consumption

Recall this Figure

Estimation of a

l
| |
P 3 : Sampled
: - h | Architecture a Performance
earc . .
| Search Alaorithm | - Estimation
! Space 8 | < Strategy
: - | Performance
l
: |

Supernet-based training optimizes search space and search algorithm together

The optimization of the architecture representations are guided by the accuracies
of architectures selected by the search strategies

What if the accuracies are bad at the beginning (e.g. cool-start)?

From the Classic NAS Framework

—
e Sampled
S h Architecture a Performance
earc . .
S;earch Algorithm > Estimation
pace - Strategy
- Performance
Estimation of a
Search Space . Evolution (EA)., We!ght-Sharlr.lg,
Design and Partitioning Reinforcement Learning (RL), Lower Fidelity Estimates,
Bayesian Optimization (BO), Bandit-based,
Gradient Descent (GD), Learning Curve Extrapolation

Neural Predictor (NP)

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

To a Study on Architecture Embeddings

—

| |
—] : : Sampled

: Architect ! S h Architecture a Performance

rcnitecture l earc . .
S;ei.rf: M Embedding [Algorithm gl Estimation
P ! : 2 - Strategy

~ 2@~ l : Performance

|

____________ I Estimation of a

In the following, | discuss about our research on decoupling neural network representation learning
and its downstream search, as well as the effect of architecture representations on the overall
performance of NAS.

10

arch2vec and CATE

arch2vec [NeurlPS’ 20] CATE [ICML’ 21]

..

E | Transformer Encoder Block L_ | :r xY)
i | T
4 | xx)| EEECOEEEEC
H ! | | |mml | [| |m}
\ ! l Transformer Encoder Block 2 l —> HHEE %EEE%D
: } EOCOEEEE
: . EEE mmmm)
V Q = I | I Transformer Encoder Block 1] .==E %====D
arlatlona """"""""""""""""" ‘f ”””””””””””””””””” 0O0O0O000000a
Segment Embedding Cross-attention mask for
Auto | NoOnO=n0non M
---------------------------- Concat ;eceeeeeeeeee e
E n c o d e r | Transformer Encoder Block L I H :| Transformer Encoder Block L I CEmEm
: : OOmmC]
_Neural Architecture Encodings 5, . : : (]
E I Transformer Encoder Block 1 |E : | Transformer Encoder Block 1 I 8 HIDIH
(Augmented) adjacency matrix
for masked self-attention

The masked operation list of X ﬁ The masked operation list of Y

Computationally similar archi e pair (X, Y)

arch2vec is a structure-aware unsupervised learning-based CATE is a computation-aware architecture encoding
architecture encoding method that decouples architecture method that encodes computations instead of
representation learning and architecture search into two structures of neural architectures via a

separate processes. transformer-based encoder.

I

11

Recap: Adjacency Matrix-based Encoding

Node
[0 12 345 6)
0fo11001 1)
, 1|0001000
320000010
Z3|/0000100
s/ 0000010
s| 0000001
Encoding B s Bakl S8y
—l Operation
[in 1x1 3x3 MP out]
071 o 0o o0 0)
s |0 0 1 0 0
2210 1 0 0 O
=30 0 0 1 0O
410 0o 1 0 0O
5/0 0 1 0 O
6\0 0 0 o0 1/

Adjacency
Matrix

Encode connections
between operations

Operation
Matrix

Encode operations

The size of the adjacency matrix grows quadratically as search space scales up, making the

downstream architecture search much less efficient.

12

13

Recap: Learning-based Embeddings

RNN

%

Different Types of Architecture Encoders such as LSTM, MLP, and GCN

Why Learning-based Embeddings

Adjacency Matrix-based Encoding

14

\—
)

CO00000Q

Node
[on & wn e o]

Ve

[in

Node
[w & wn = o]

Q00000

]

cooocoQm ™
coooocaow M,
cooocormo W
cooROoOO0O &
COrORmOm Y

Operation
ix1 3x3 MP

0

oo, QO
Q.00
OO0 O0O0O

2
J

OCrOOOOw

-

out]

Ll = I = = R

Adjacency
Matrix

Operation
Matrix

High-dimensional & discrete search

space

Learning-based Embeddings

Architecture

Encoder

Learned architecture embeddings
in the Low-dimensional latent space

Conducting neural architecture search on such
low-dimensional continuous space is much easier and is
hence more efficient.

Drawback of Existing Learning-based Embedding Methods

* Architecture embeddings and search algorithms are jointly optimized in a supervised manner, guided by
the accuracies of architectures selected by the search strategies.

— N\
v
Architec
Search o
Search ture | Alaorith Decoder Estimation
Space Encoder gorithm Strategy
—_ mmm)

Supervised Embeddings

Validation Accuracy of a

Architecture embeddings and search strategies are
jointly optimized in a supervised manner

15

Our Proposed Method: arch2vec

* We propose arch2vec, a simple yet effective unsupervised architecture representation learning method for
neural architecture search.

* Decouple architecture embedding learning and architecture search into two separate processes.

—
—

Search
Space

N

16

Variational
Auto
Encoder

_Neural Architecture Encodings)

Pretrained Embeddings

Pre-training architecture embeddings in an

unsupervised manner

Decoded
Architecture a
> Performance

Search
Algorithm P

Estimation
Strategy

Validation
Accuracy of a

Variational Graph Isomorphism Autoencoder

Let A denote Adjacency Matrix, X denote Operation Matrix.

Augment Aas A = A+ AT to transfer original directed graph into undirected one to allow bi-directional information flow.

N
Encoder 9(Z|X, A) = | [a(z:|X, A), with q(z;|X, A) = N (zi|p;, diag(a?)),
=1
H® — MLp®*) ((1 n 6(/lc)) i (G Y AH(k_l)) E—19 i L-layer Graph Isomorphism
’ T Network (GIN)
b d N N
ecoder A _ A e e . A — o e /L Reconstructed
p(AlZ) — l—Il 1_[1 P(Azglzzy ZJ):Wlth p(A%J o 1|z7”z9) o J(Z,L- ZJ) Adjacency Matrix
i1=1 3=
N N
n r a Reconstructed
p(X = [k1,....kN]"|Z) = HP(Xi = kilz;) = Hsoftmax(WoZ + bo)i,k;: Operation Matrix
g=1 =1

Training objective
L=]Eq(z|x,js;) [logp(X, A|Z)] — Dr(9(Z|X, A)HP(Z))

17

Pretrained Embeddings for Architecture Search

We use reinforcement learning (RL) and Bayesian optimization (BO) as two representative search algorithms.

Decoded
Architecture a
- Performance

Search
Algorithm P™

Estimation
Strategy

Validation

 Nelrs Aritactire o y
Accuracy of a

Pretrained Embeddings RL, BO

* RL: State: pretrained embeddings. Policy Net: LSTM. Reward: Validation accuracy
e BO: Surrogate: 2-Layer MLP (instead of GP). Acquisition function: El.
* Output top-K architectures in each round of search and optimize the policy/surrogate iteratively

18

Pre-training Performance

* Three commonly used NAS search spaces: NAS-Bench-101, NAS-Bench-201, and the DARTS search space.

* We compare arch2vec with two baselines: Graph Autoencoders (GAE) and Variational Graph Autoencoders
(VGAE) under three metrics:

e Reconstruction Accuracy: how accurate the reconstructed network architectures are.
 Validity: how often the generated architectures are valid graphs.
* Unigueness: how many generated valid architectures are unique.

Method NAS-Bench-101 NAS-Bench-201 DARTS
Accuracy Validity = Uniqueness | Accuracy Validity = Uniqueness | Accuracy Validity = Uniqueness
GAE [27] 98.75 29, 88 99.25 99.52 79.28 78 42 97 80 15.25 99.65
) Q
arch2vec 100 51.33 A ‘ ‘ 99.79 33.36 100

19

Understanding Pre-trained Embeddings (1)

« We compare the predictive performance of the 0.95
pretrained embeddings and supervised
embeddings. This metric measures how well the
embeddings can predict the performance of the
corresponding architectures.

0.90

0.85

Predicted Accuracy

e We train a Gaussian Process model with 250 0.80 it m R
sampled data to predict all data and report the g8 685 05 0.8 0.85 0.9 0.95
results across 10 different seeds. We use RMSE and Test Accuracy
the Pearson correlation coefficient to evaluate : :
points with test accuracy larger than 0.8, Pretrained Supervised

Embeddings Embeddings

(arch2vec)

The RMSE and Pearson’s r are: 0.038+0.025 / 0.53+0.09
for supervised embeddings, and 0.018+0.001 / 0.67
+0.02 for arch2vec.

20

Understanding Pre-trained Embeddings (2)

* We compare the distribution of L2 distance 3.0 1 - 112§ -
between architecture pairs by edit distance, 25 o
measured by 1,000 architectures sampled in a long

random walk with 1 edit distance apart from g 20 | | 8
consecutive samples. £ 15 | 6 |
2. SEEET
* The L2 distance of pretrained embeddings grows 0.6 | | ‘ L]
monotonically with increasing edit distance. l e
e e et]
A W TS T R B IEE R
* This observation indicates that the pretrained Edit Distance
embeddings are able to better capture the Pretrained Supervised
structural information of neural networks, and thus beddi beddi
make similar architectures clustered better. Embeddings Embeddings

(arch2vec)

21

Understanding Pre-trained Embeddings (3)

* We visualize the latent spaces learned by arch2vec 0.92
and its supervised learning counterpart in
2-dimensional space. 0.90 >
s 088§
* Compared to supervised embeddings, pretrained - ; : 0.86 =
embeddings span the whole latent space, and a | ' §
architectures with similar accuracies are clustered . E y 0.84
and distributed more smoothly in the latent space. .
'I“:..- 0.82
* Conducting architecture search on such smooth Latent space 2D visualization comparison between

performance surface is much easier and is hence

. arch2vec (left) and supervised architecture representation
more efficient.

learning (right). Color encodes test accuracy.

22

Understanding Pre-trained Embeddings (4)

c
(7]
Sew
T o 8§
cS T
mdma
c T 0
tEdm
a €5 3
w o S
(e
0

architectures are 4,

. 6,1,5,1,1,1,5, 2,

bt -
— o Eodg
- gcas&. w —
(Tp) %nn.lae o o
— = 0 T N |
-~ thaug "
N Co v s o ~o9
- QO V= & ON
< s o090 ™
~ = 2 oEN L °9
o m o= 161
Srr_dWh -
) Qe LY
(eMIl
0 o0
\)/

*»
‘

,. \\//@-k-

23

Understanding Pre-trained Embeddings (4)

- 10°
1.04 ---- RWA Z
* The locality around the global maximum as +— FDC % 107
. \ =
well and the peak also has a coarse-grained < \ ,g -
width of about 6 = Ny E | .
. : Ny P 03] Jioiuene raction Within = 0:354
m The RWA is nearly O during the 0.0 £40
. \ o
joint optimization 5 - 700-89 z 10-46 : %
distance distance to closest peak

Figure 6: (left) RWA for the full space and the FDC relative
to the global maximum. To plot both curves on a common
horizontal axis, the autocorrelation curve i1s drawn as a func-
tion of the square root of the autocorrelation shift, to account
for the fact that a random walk reaches a mean distance /N
after IV steps. (right) Fraction of the search space volume
that lies within a given distance to the closest high peak.

NAS-Bench-101: Towards Reproducible Neural Architecture Search. Ying et al. ICML 2019

24

Architecture Search Performance on NAS-Bench-101

BOHB and RE are two best-performing search
methods using discrete encoding.

However, they perform slightly worse than
supervised architecture representation
learning.

arch2vec considerably outperforms its
supervised counterpart and the discrete
encoding after 50,000 wall clock seconds.

25

— — —~— — \: \.
AR\
N
.\-\\ \ N
o '\ \\. -
e \. . \\\
- _\. ~N
g S
& 10"? 1 —&. Discrete: Random Search u"‘{\\\“"
3 -» - Discrete: Regularized Evolution ™ \‘~~_"5_,~
— - Discrete: REINFORCE '\'\) Sy
-« Discrete: BOHB '\
—— Supervised: REINFORCE T
-»- Supervised: Bayesian Optimization \'\.\
— - arch2vec: REINFORCE -
-» - arch2vec: Bayesian Optimization \.
102 10° 104 10° 10°

estimated wall-clock time [s]

26

Architecture Search Performance on NAS-Bench-201

Searching with arch2vec consistently outperforms other approaches on all the three datasets in
NAS-Bench-201, leading to better validation and test accuracy as well as reduced variability.

CIFAR-10 CIFAR-100 ImageNet-16-120

NAS Methods validation test validation test validation test
RE [41] 91.08+0.43 | 93.841+043 | 73.024+0.46 | 72.86+0.55 | 45.78+0.56 | 45.63+0.64
RS [59] 90.94+0.38 | 93.75+£0.37 | 72.17+£0.64 | 72.05+0.77 | 45.474+0.65 | 45.3340.79
REINFORCE [10] | 91.0340.33 | 93.82+0.31 | 72.35+0.63 | 72.13+0.79 | 45.584+0.62 | 45.3010.86
BOHB [12] 90.824+0.53 | 93.61+0.52 | 72.59+0.82 | 72.37+0.90 | 45.4440.70 | 45.26+0.83
arch2vec-RL 01.324+0.42 | 94.124-0.42 | 73.134+0.72 | 73.154+0.78 | 46.22+0.30 | 46.16+0.38
arch2vec-BO 91.41+0.22 | 94.18+0.24 | 73.35+0.32 | 73.37+0.30 | 46.34+0.18 | 46.27+0.37

Architecture Search Performance on DARTS

Test Error Params (M) Search Cost B
NAS Methods Avg Best Stage 1 Stage 2 | Total Encoding Search Method
Random Search [15] 3.291+0.15 - 3.2 - - 4 - Random
ENAS [68] - 2.89 4.6 0.5 - - Supervised REINFORCE
ASHA [69] 3.03+0.13 2.85 2.2 - - 9 - Random
RS WS [69] 2.85+0.08 271 43 2.7 6 8.7 - Random
SNAS [16] 2.85+0.02 - 2.8 1.5 - - Supervised GD
DARTS [15] 2.76+0.09 - 33 4 1 5 Supervised GD
BANANAS [49] 2.64 2.57 3.6 100 (queries) - 11.8 Supervised BO
Random Search (ours) 3.1+0.18 2.71 3.2 - - 4 - Random
DARTS (ours) 2.71+0.08 2.63 33 4 1.2 52 Supervised GD
BANANAS (ours) 2.67+0.07 261 36 100 (queries) 1.3 11.5 Supervised BO
arch2vec-RL 2.65+0.05 2.60 33 100 (queries) 1.2 9.5 Unsupervised REINFORCE
arch2vec-BO 2.56:+0.05 | 248 3.6 100 (queries) 1.3 10.5 Unsupervised BO

Table 4: Comparison with state-of-the-art cell-based NAS methods on DARTS search space using
CIFAR-10. The test error is averaged over 5 seeds. Stage | shows the GPU days (or number of
queries) for model search and Stage 2 shows the GPU days for model evaluation.

NAS Methods Params (M) | Mult-Adds (M) | Top-1 Test Error (%) | Comparable Search Space
NASNet-A [62]] 564 26.0 Y
AmoebaNet-A [44] 5.1 555 25.5 Y
PNAS [44] 9.1 588 25.8 Y
SNAS [16] 4.3 522 273 Y
DARTS [15] 4.7 574 26.7 ' ¢
arch2vec-RL 4.8 533 258 Y
arch2vec-BO 3.2 580 25.5 Y

Table 5: Transfer learning results on ImageNet.

Drawback of Structure-aware Encoding

Two neural networks below with different structures represent the same computation: sin(x)? + sin(x)>.

'

-

Encode structures of them will result in the same embedding located in different regions in the latent space.

Instead, encoding computation contributes to an encoding space with respect to the actual performance of
the neural networks.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurlPS 2019

28

29

Computation-aware Encoding: Path-based Encoding

Encoding
——

Path#1 Path#2 Path#3 Path#4

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurlPS 2020

30

Computation-aware Encoding: Path-based Encoding

-———— i,
- -~

ﬁ@ ‘ o6
-

o _JORCE

o %o ¢

Pros

Maps neural networks with different
structures but the same computation to the
same encoding.

Cons

Scales exponentially without truncation but
causes information loss with truncation.

Shows worse generalization performance in
outside search space compared to adjacency
matrix-based encoding.

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurlPS 2020

Computation-aware Encoding: D-VAE

|convs | [max3 | |input|

i

Aggregate messages A
U

1\

from predecessors

Update the hidden
state of this node

Directly learning the generative model based on a single architecture is not trivial.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

31

Our Proposed Method: CATE
(Computation-Aware Transformer-based Encoding)

MLM pre-training objective

E Transformer Encoder Block L_ E (X, Y)
: | | | [mm O
* : (X,X) IIIDDI.IID
i mm | | [[
Transformer Encoder Block 2 [::> DD%E}I%E%E%D
f . [[[mmjm] [[T |
" (Y, X) EEECOOEEEE_ (Y, Y)
Transformer Encoder Block 1 P .==%E====
"""""""""""""""""""" T" OO00O00000O00
| Segment Embedding l Cross-attention mask for
variable length input pairs
o))08 = e e e ()
P eMeeemdeeemseemeeee--- Concat ~-ccccccccccccccccccccccnen- :
i I Transformer Encoder Block L I i Transformer Encoder Block L I COmmE.
1 i : ? oMM
. | : : —— QOOCOmC]
l Transformer Encoder Block 1] ' l Transformer Encoder Block 1] %%%%5
? T (Augmented) adjacency matrix
| Semantic Embedding | == | Semantic Embedding | for masked self-attention
Shared
[?][Xz][xs][xa][?l (v)00)00
[
The masked operation list of X ﬁ The masked operation list of Y

Computationally similar architecture pair (X, Y)

32

CATE takes paired computationally similar
architectures as its input.

Similar to BERT, CATE trains a
Transformer-based model using the masked
autoencoding (MAE) objective.

Each input architecture pair is corrupted by
replacing a fraction of their operators with a
special [MASK] token.

The model is trained to predict those
masked operators from the corrupted
architecture pair.

Why Pairwise Pre-training

Language Modeling

ﬁp Mask LM
" . -

Mask LM \
5 5

Masked Sentence A
. 3
Unlabeled Sentence A and B Pair

[o)} v I [] 1
BERT

). ElEE]. &

B . (. 6E

_I_l]_’_l

Masked Sentence B

Architecture Encoding

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> €env-bt -> Max Pool -> ...

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> ? -> Max Pool -> ...

e Challenge: unlike LM, each prediction is
uniformly distributed

e Solution: condition on pairwise
computationally similar architectures

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL-HLT 2019

33

34

Offline Architecture Pair Sampling

Sort the architectures based on their computational attributes P (e.g. number of parameters, FLOPs).

Use a sliding window for each architecture x. and its neighborhood r(x.) = {y : [P(x)= P(y)| < 0}, where
O is a hyperparameter for the pairwise computation constraint.

Finally, we randomly select K distinct architectures Y ={y_, ...,y },x not € Y, Y C r(x) within the
neighborhood to compose K architecture pairs {(x, y,), . . . ,(x, y,)} for architecture x

We use 0 = 1e°, 2e°, 4e®, 8e®, K =1, 2, 4, 8 in our experiments.

Attention Mask

Algorithm 1 Floyd Algorithm
I: Input: the node set V, the adjacent matrix A

111 2 A A
-- 3: for k € Vdo
4. forz € Vdo
. 5 for j € Vdo _ .
- 6: Ai‘;j |=Aix & Ak,j
7: Output: A
(Augmented) adjacency matrix . ;oA =1
3 . MD@rect - { ’ l 8537
for masked self-attention ij —00, if Ai;=0
M[?}direct i { Oa lf 423 =1
.3 —0o, if A;;=0

Why:
e Encode long range dependency of different operations beyond adjacency matrix
e Together with MLM, encode both local and global computation information
e Important for encodings to be generalized to outside search space beyond the training search space

35

Pairwise Pre-training Scheme

MLM pre-training objective

Transformer Encoder Block L,

Transformer Encoder Block 2

I

Transformer Encoder Block 1

_________________________________ T

’ Segment Embedding l
(e)) == S ()
[Transformer Encoder Block L | |
: i § : T i
[Transformer Encoder Block 1| [Transformer Encoder Block 1_|! CATE encodes computationally similar
""""""""" TUUUfTTTT " architecture pairs through two Transformers
| semantickmbedding | {———) [SemantcEmbeddng | with shared parameters.
EIEVESENEY Lo JC s v)
The masked operation list of X G The masked oeration list of Y

Computationally similar architecture pair (X, Y)

37

Pairwise Pre-training Scheme

MLM pre-training objective

Transformer Encoder Block L,

? i

' Transformer Encoder Block 2

T

Transformer Encoder Block 1

| Segment Embedding l
o) 0 0) J ==))0)0)0
Pttt ettty . Concat ----eeeeee e ,
E | Transformer Encoder Block L | | : | Transformer Encoder Block L I :
: 1 5 : ! 5
E LTransformer Encoder Block 1 |E i [Transformer Encoder Block 1 I E
| Semantic Embedding | <:> | Semantic Embedding |
Shared
33Ny AR5
| | I | |
The masked operation list of X ﬁ The masked operation list of Y

Computationally similar architecture pair (X, Y)

The two individual encodings are then concatenated,
and the concatenated encoding is fed into another
Transformer with a cross-attention encoder to
encode the joint information of the architecture pair.

Experimental Setup
Compare CATE with 11 structure-aware and computation-aware architecture encoding schemes:

One-hot/Categorical/Continuous adjacency matrix-based encoding (3)
One-hot/Categorical/Continuous path-based encoding (3) and their truncated counterparts (3)
D-VAE

arch2vec

Three major encoding-dependent NAS subroutines:

e Sample random architecture subroutine: random search (RS)
® Perturb architecture subroutine: regularized evolution (REA), local search (LS)
® Train predictor model subroutine: neural predictor, BO with GP, BO with DNGO

39

Comparison between CATE and other Encoding Schemes

test error [%]

o
n

o
~

o
o
L

o
=

o
w

Sample Random Arch:Random Search

—F— adjacency
—f— path
~F— cont_adj
—J— cont_path

20 40 60 80 100 120 140
number of samples

Train Predictor Model:Neural Predictor

~F— dvae
{ —— cat_adj
~F— cont_adj
1 1 ~F— trunc_path
~F— cate

20 40 60 80 100 120 140
number of samples

7.0 1

o
@
N

o
o
1

test error [%]

o
P
X

6.2

Perturb Arch:Regularized Evolution

—I— adjacency
~4— path

—F— trunc_path
~—— cat_path

—I— cate

Train Predictor Model:Bayesian Optimization (GP)

20 40 60 80 100 120 140
number of samples

6.8 1

o
)
1

&
'Y
R

test error [%]

L
[N

6.0 1

~J— adjacency
~+— cont_adj
—— path

~4— trunc_path
—— cate

20 40 60 80 100 120 140
number of samples

Perturb Arch:Local Search

—I— adjacency
~4— cont_adj
—— path

~F— trunc_path
—f— cate

test error [%]

o
- N
f N

o
(=]
1

20 40 60 80 100 120 140
number of samples

Train Predictor Model:Bayesian Optimization (DNGO)

~J— adjacency
6.8 + path
~f— trunc_path
— 6.64 —f— arch2vec
§ —f— cate
—
o
5 6.4
Py
w
8 =
6.2 1 i
=3
+
6.0 +

20 40 60 80 100 120 140
number of samples

Comparison between CATE and other NAS Methods

NAS on NASBench-101 (>=1 subroutines) NAS on NASBench-301 (>=1 subroutines)

—I— RS 641 . —JF— RS
~F— REA ~F— REA
== LS -t LS
~J— DNGO 6.2 - ~f— DNGO
~+— BOHAMIANN ~F— BOHAMIANN
~J~ BOGCN ~J~ BOGCN
~F— BANANAS 2 ~F— BANANAS
S 65 ~JF— arch2vec-DNGO - ~J— cate-LS
s ~+— cate-DNGO & ~f— cate-DNGO
5 ~J— cate-DNGO-LS 5 ~F— cate-DNGO-LS
o £ 5.8
()] (]
B 6.3 T @
g I L3 g
s : 5.6 1
-
6.1 - 3
5.4 - s
s
5.9 1
Y T T T T T T 5.2 i T T T T T T T T T T
20 40 60 80 100 120 140 10 20 30 40 50 60 70 80 90 100

40

number of samples

number of samples

Hyperparameter Choices

Mask type NAS-Bench-101 NAS-Bench-301

N I 2 4 8
1x10° | 602 | 595 | 599 | 595
2% 10° | 6.02 | 594 | 6.04 | 596
4x10° | 594 | 603 | 605 | 599
8 x 10% | 6.05 | 6.04 | 6.11 | 6.04

Direct 6.03 5.35
Indirect 5.94 5.30

Table 4. Effects of 4 and K on architecture pair sampling.

e Strong computation locality (i.e. small d) leads to better results

Table 6. Direct/Indirect dependency mask selection.

e Capturing long-range dependency helps preserve computation information in the encodings

41

Generalization to Outside Search Space

A simple 2-layer MLP predictor

6.1 - —I— cate

—I— adj

2
o
1

o
©
A

validation error [%]
» wu L
()] ~J o]

tn
n

4
=Y
1

20 30 40 50 60 70 80 90 100 110 120 130 140 150
number of samples

e Better generalization when adapting to outside search space

42

Recall this Figure

—
~ 000 Sampled
. Architecture a Performance
Search Architecture Search >

Estimation
Strategy

Space Embedding Algorithm &

Performance

EA, RL, BO, NP Estimation of a
(Single-Fidelity)

v

Early Stopping
Bandit-based,
Learning Curve Extrapolation

In the following, | talk about our research on speedy performance estimation.

43

NAS-Bench-x11 and the Power of Learning Curves [NeurlPs’ 21]

Table 1: Overview of existing NAS benchmarks. We introduce NAS-Bench-111, -311, and -NLP11.

Benchmark Size Queryable Based on Full train info
NAS-Bench-101 423k v X
NAS-Bench-201 6k v v
NAS-Bench-NLP 1()5‘_‘ X X
NAS-Bench-301 108 v DARTS X
NAS-Bench-ASR 8k v v
NAS-Bench-111 423k v NAS-Bench-101 v
NAS-Bench-311 1018 v DARTS v
NAS-Bench-NLP11 | 10?2 v NAS-Bench-NLP v

e A technique to create surrogate NAS benchmarks that include full training information for each
architecture, including train/validation/test loss and accuracy learning curves

e Allow researchers to easily develop multi-fidelity NAS algorithms

Roadmap

e (Generating Learning Curves @ =)
e Evaluation

e The Power of Learning Curves | -

K*W

=z == # 40

1
:

}ﬂ?

-Model

G
>-Model -{ .

Generating Learning Curves

NAS-Bench-101 arch 0 NAS-Bench-101 arch 1 NAS-Bench-101 arch 2

0.8
0.6

0.4

0.2 —— True LC seed 0 0.2 —— True LC seed 0 0.2 —— True LC seed 0 @
True LC seed 1 True LC seed 1 True LC seed 1
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 @ _—
NAS-Bench-101 arch 3 NAS-Bench-101 arch 4 NAS-Bench-101 arch 5 @
0.8
0.2 ~—— True LC seed 0 0.2 N ' —— True LC seed 0 0.2 E ’ MOdeI ’ ‘!

rue LC see
True LC seed 1 True LC seed 1 True LC seed 1 @‘@ ii

0.8

0.6 0.6

0.4 0.4

v

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Generating realistic noise is critical @ . [C

Goal: given architecture encoding, predict a distribution

Two-part technique

47

>-Model»| .. J

Figure 5: A summary of our approach to create surrogate benchmarks that output realistic learning
curves. Compression and decompression functions are learned using the training set of learning
curves (in the figure, SVD is shown, but a VAE can also be used). The compression also helps to
de-noise the learning curves. A model (p-model) is trained to predict the compressed (de-noised)
learning curves given the architecture encoding. A separate model (2-model) is trained to predict
each learning curve’s noise distribution, given the architecture encoding and predicted compressed
learning curve. A realistic learning curve can then be outputted by decompressing the predicted
learning curve and sampling noise from the noise distribution.

(1) Predict mean LC (2) Predict noise

(1) Predicting the mean learning curves

XGBoost| —

(1) Predicting the mean learning curve

Reconstructed vs. real LCs

* Compress the oq . ReCOMStruction error for LCs
learning curves from Reconstructed LC, 0.8
th t . . t . 0.007 MSE w.r.t. mean y;
€ ralnlng S€L Vvia 0.006 Reconstructed LC, 9
SVD MSE w.r.t. true (noisy) y; © 0.6
0.005 — 3
' i minimum MSE w.r.t. mean S
 Predict only the top £ 0004 5 0.4
k rinCi al 0.003) = ! —— Ground truth LC
P P - R = | Reconstructed LC, k=1
Components ' ; ——— | 0:2 —— Reconstructed LC, k=4
0.001 e S e \ —— Reconstructed LC, k=16
0.000 0.0
0 10 20 30 40 0 20 40 60 80 100
Num. components k Epochs

e SVD helps to reduce the noise
® k=6 is the sweet spot where the compression function minimizes reconstruction error without
overfitting the noise of individual learning curves

(2) Noise Modeling

e Assume the noise comes from an isotropic
Gaussian distribution

O

50

The noise distribution is the same for

all architectures
m asimple sample standard deviation
statistic (STD)
m a Gaussian kernel density estimation
(GKDE) model trained on residuals to
create a multivariate KDE

For each architecture, the noise in a
small window of epochs are i.i.d.
m a model trained on estimate the
distribution of noise over a window of
epochs

700 Residual histograms Autocorrelation of LCs (ACF) 5 Std. dev of LCs
— Epoch 0 10 ¢ 90% confidence
600 —— Epoch 20 interval 1
0.8
500 —— Epoch 40 K5 -8 _ autocorrelation
—— Epoch 60 ® 06
— 3 >
€ 400 —— Epoch 80 2 3 g
3 S 04 : |
O 300 c 2 _q 1
o ("2}
. w 0.2 arch sample 1
g 0.0 > arch sample 2
100 ’ > 90% confidence
-0.2 interval
0 -3
-2 0 2 0 10 20 30 40 0 25 50 75 100
Residual value Epochs Epochs

Figure 6: A plot of the residuals across all architectures for five different epochs (left). We see that
the distributions are roughly Gaussian. A plot of the autocorrelation function (ACF) averaged over
all training learning curves (middle). We see that there is only a small amount of autocorrelation.
A plot of the 90% confidence intervals of the residuals at each epoch (right). All plots use the
NAS-Bench-301 learning curve training set.

Surrogate Selection

Table 3: Evaluation of the surrogate benchmarks on test sets, with all combinations of models. For
NAS-Bench-111 and NAS-Bench-NLP11, we use architecture accuracies as additional features to

H . : improve performance. As explained in Section B, no architectures in the NAS-Bench-NLP dataset
¢ F u I I d b I atl on St u dy O n 18 co m bl n atl ons {SV DI VAE }I {LG B, XG BI were trained more than once. so we do not compute KL divergence for NAS-Bench-NLP11.
M LP}, {G KDE, STD, Slidi ng WlndOW} Benchmark Avg. R* Final R* Avg.KT Final KT Avg. KL Final KL

NAS-Bench-111 |

[SVD-LGB-GKDE | 0.630 | 0853 | 0.611 0.794 1.641 0.516 |
SVD-LGB-STD 0.630 | 0853 | 0.611 0.794 2.768 0.383
i SVD-LGB-window | 0.630 | 0853 | 0.611 0.794 | 24.402 3.303
e SVD-LGB-GKDE archives the best performance SVD-XGB-GKDE | 0329 | 0378 | 0408 0.429 2743 0.580
SVD-XGB-STD 0320 | 0378 | 0408 0429 | 4867 0.503
SVD-XGB-window | 0329 | 0378 | 0.408 0429 | 38457 | 16172
SVD-MLP-GKDE | 0.195 | 0065 | 0330 | 0290 | 459 0.762
. . SVD-MLP-STD 0195 | 0065 | 0330 | 0290 8.417 0.848
e Therefore, we use it as the surrogate predictor to extrapolate the SVD-MLP-window | 0195 | 0065 | 0330 | 0290 | 8218 | 15711
| . VAE-LGB-GKDE | 0267 | 0218 | 0462 0.617 3.788 0.829
earning curves VAE-LGB-STD 0267 | 0218 | 0462 | 0617 | 6866 0.972
VAE-LGB-window | 0267 | 0218 | 0462 0617 | 53866 | 19.820
VAE-XGB-GKDE | 0311 | 0272 | 0453 0.559 3.828 0.828
VAE-XGB-STD 0311 | 0272 | 0453 0.559 6.940 0.969
- N 2 VAE-XGB-window | 0311 | 0272 | 0453 0559 | 55654 | 19614
Coefficient of determination: R VAE-MLP-GKDE | 0218 | 0007 | 038 | 0369 | 4.583 0.844
VAE-MLP-STD 0218 | 0007 | 038 | 0369 8.386 1.001
Kenda” Tau rank correlation: KT VAE-MLP-window 0.218 ‘ 0.007 0.386 0.369 83.481 19.091
NAS-Bench-311]
Kullback Leibler divergence: KL [SVD-LGB-GKDE | 0779 | 0800 | 0.728 0.788 0.503 0.548 |
SVD-LGB-STD 0779 | 0800 | 0728 | 0788 | 0919 T.0%6
SVD-LGB-window | 0.779 | 0.800 | 0728 | 0.788 1.566 4.083
SVD-XGB-GKDE | 0522 | 0546 | 0607 0.654 1.783 3272
SVD-XGB-STD 0522 | 0546 | 0607 0.654 3.271 5.958
SVD-XGB-window | 0522 | 0546 | 0607 0.654 5.282 19.432
SVD-MLP-GKDE | 0564 | 0549 | 0573 0603 | 15727 | 29.057
SVD-MLP-STD 0564 | 0549 | 0573 0603 | 28833 | 52515
SVD-MLP-window | 0564 | 0549 | 0573 0603 | 45071 | 167.140
VAE-LGB-GKDE | 0431 | 0447 | 0568 0.616 5.995 13.486
VAE-LGB-STD 0431 | 0447 | 0568 0616 | 11015 | 24836
VAE-LGB-window | 0431 | 0447 | 0568 0616 | 17510 | 79.773
VAE-XGB-GKDE | 0397 | 0427 | 0577 0.624 6.520 16.739
VAE-XGB-STD 0397 | 0427 | 0577 0624 | 11978 | 30368
VAE-XGB-window | 0397 | 0427 | 0577 0624 | 18883 | 97485
VAE-MLP-GKDE | 0509 | 0520 | 0584 0619 | 13545 | 33851
VAE-MLP-STD 0509 | 052 | 0584 0619 | 24770 | 61455
VAE-MLP-window | 0.509 | 0520 | 0584 0619 | 38593 | 196.246
NAS-Bench-NLPI1 |
[svD-LGB 0.878 0.895 0.878 0.844 - -
SVD-XGB 0877 | 0806 | 0856 | 0820 2 :
SVD-MLP 0893 | 0856 | 0742 0.692 c =
VAE-LGB 0862 | 0847 | 0766 | 0770 3 °
51 VAE-XGB 0875 | 0860 | 0720 | 0687 c S
VAE-MLP 0867 | 0871 0.667 0.685 : :

52

The Power of Learning Curve Extrapolation

Algorithm 1 Single-Fidelity Algorithm Algorithm 2 LCE Framework
1: initialize history l: initialize history
2: whileidl < tws 2 whilet e
3: arches = gen_candidates(history) 3 arches = gen_candidates(history)
4: accs = train(arches, epoch=Fpay) 4: accs = train(arches, epoch=Fsey)
5: history.update(arches, accs) 5: [sorted_by_pred = LCE(arches, accs)]
6: Return arch with the highest acc 6: arches = sorted_by_pred[:top_n]
7 accs = train(arches, epoch=E.;)
8: history.update(arches, accs)
9: Return arch with the highest acc

® Propose a simple learning curve extrapolation (LCE) framework to speed-up NAS
e Extrapolator candidates:
o Model-free:
m Weighted Probabilistic Modeling (WPM): using MCMC to sample the most promising fit
o Model-based:
m Learning Curve Support vector regressor (LcSVR)

53

LCE Applied to a Single-Fidelity

NAS-Bench-111 CIFAR10

NAS-Bench-311 CIFAR10

NAS-Bench-311 CIFAR10

NAS-Bench-NLP11 PTB

107!
4 . g
4 4
@ o E‘
- 1072 1 b=l N 10 x
9_) g — BANANAS ree LSSVR "’-‘.: >m — BANANAS “ee LSSVR g
— “es —_— ==+ BANANASSVR w— REA — BANANAS «ss LSSVR
(@) BANANAS — :mms i coe z: VA — BOHEB ¥ =« REASVR o eon BANANASSVR s REA
- — B — RS — HB — RS — HB *+» REASVR
9_)] - BANANAS-WPM] e i al= A ; | — v s ik
: *~ BANANAS-SVR 105 10¢ 10 108 10° 10°
E — | S Runtime (seconds) Runtime (seconds) Runtime (seconds)
g AT i-:(;:d NAS-Bench-201 CIFAR10 NAS-Bench-201 CIFAR100 NAS-Bench-201 ImageNet16-120
107!
e REA 10
{ = = REA-WPM 8 % -
o & 4
< REA-SVR] @ g
T T T 107 z b
105 106 g — BANANAS tee LSSVR o g 1072 o e BANANAS cer LSSVR - § 2)i BANANAS cee LSSVR
a * +» BANANAS-SVR w— REA * =+ BANANASSVR w— REA * « s+ BANANASSVR = REA
Runtime (seconds) ey —ow e Ty
— LS — LS — LS
-3
Y 108 10¢ 10° 10¢ 108 108

Runtime (seconds) Runtime (seconds) Runtime (seconds)

Figure 3: LCE Framework ap-
plied to single-fidelity algorithms
on NAS-Bench-311.

Figure 4: NAS results on six different combinations of search spaces and datasets. For every setting,
an SVR augmented method performs best.

Solid line: Best sampling-based NAS methods (e.g. BANANAS, LS, REA)
Dashed line: Further improvement via LcSVR or WPM
Consistent improvement across all search spaces

Summary of my research on NAS

—

~ 000 Sampled
P Architecture a Performance
rcnitectiure . .
Ssea;rcc: Embedding Algorithm - Estimation
P < Strategy
- Performance
EA, RL, BO, NP Estimation of a Earlv Stoopi
arch2vec, (Single-Fidelity) arly Stopping

Bandit-based,

CATE GD (Weight-Sharin
(Weig g) Learning Curve Extrapolation

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

54

55

Papers and Codes

For more detailed information and codes, please refer to:

arch2vec [NeurlPS’ 20]: https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec

CATE [ICML 21]: https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

NAS-Bench-x11 [NeurlPS’ 21]: https://arxiv.org/abs/2111.03602
https://github.com/automl/nas-bench-x11
https://github.com/automl/NASLib

https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec
https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

