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● Background of NAS

○ Search Space and Architecture Encodings

○ Search Algorithms and Performance Estimations

● A Study on Neural Architecture Representations

○ Why Decouples Architecture Representations and Search Algorithms

○ Visualizations and Analysis

○ From Encoding Structures of Neural Networks to Computations

● Speedy Performance Estimation via Learning Curve Extrapolation

○ Create a Multi-Fidelity Surrogate Benchmark for Evaluating Anytime NAS algorithms

○ Speedy Estimations via Partial Curve Extrapolations
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Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019
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Search Space

Set of Operations:

• Identity
• 3x3 convolution
• 1x1 convolution 
• 3x3 max pooling 
• skip connection

Search 
Space

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, Frank Hutter., NAS-Bench-101: Towards Reproducible Neural Architecture Search, JMLR 2019
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Search Algorithm + Performance Evaluation
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e.g. Random Search, Evolution, 
Reinforcement Learning, Bayesian 
Optimization, One-shot (supernet)
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Search Algorithm + Performance Evaluation
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Recall this Figure
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● Supernet-based training optimizes search space and search algorithm together

● The optimization of the architecture representations are guided by the accuracies 
of architectures selected by the search strategies

● What if the accuracies are bad at the beginning (e.g. cool-start)?



From the Classic NAS Framework
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Evolution (EA), 
Reinforcement Learning (RL), 
Bayesian Optimization (BO),

Gradient Descent (GD),
Neural Predictor (NP)

Search Space 
Design and Partitioning

Weight Sharing, 
Lower Fidelity Estimates,

Bandit-based,
Learning Curve Extrapolation

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019



To a Study on Architecture Embeddings
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Architecture 
Embedding

In the following, I discuss about our research on decoupling neural network representation learning 
and its downstream search, as well as the effect of architecture representations on the overall 
performance of NAS.
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arch2vec and CATE

CATE  [ICML’ 21]

arch2vec is a structure-aware unsupervised learning-based 
architecture encoding method that decouples architecture 
representation learning and architecture search into two 
separate processes.  

arch2vec  [NeurIPS’ 20]

Variational 
Auto

Encoder

CATE is a computation-aware architecture encoding 
method that encodes computations instead of 
structures of neural architectures via a 
transformer-based encoder.  
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Recap: Adjacency Matrix-based Encoding

Adjacency 
Matrix

Operation 
Matrix

Encoding

Encode operations

Encode connections 
between operations

       The size of the adjacency matrix grows quadratically as search space scales up, making the 
downstream architecture search much less efficient.



Recap: Learning-based Embeddings

Different Types of Architecture Encoders such as LSTM, MLP, and GCN
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RNN



14

 

Why Learning-based Embeddings

Adjacency Matrix-based Encoding Learning-based Embeddings

Adjacency 
Matrix

Operation 
Matrix

Learned architecture embeddings 
in the Low-dimensional latent space

High-dimensional & discrete search 
space

Architecture
Encoder

Conducting neural architecture search on such 
low-dimensional continuous space is much easier and is 
hence more efficient.  
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• Architecture embeddings and search algorithms are jointly optimized in a supervised manner, guided by 
the accuracies of architectures selected by the search strategies.

Drawback of Existing Learning-based Embedding Methods

Search 
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Architecture embeddings and search strategies are 
jointly optimized in a supervised manner

Supervised Embeddings
Validation Accuracy of a
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• We propose arch2vec, a simple yet effective unsupervised architecture representation learning method for 
neural architecture search.

• Decouple architecture embedding learning and architecture search into two separate processes.

Our Proposed Method: arch2vec 
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Pretrained Embeddings

Pre-training architecture embeddings in an 
unsupervised manner

Validation 
Accuracy of a
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Variational Graph Isomorphism Autoencoder

Encoder

Decoder

Let A denote Adjacency Matrix, X denote Operation Matrix.

Augment A as  to transfer original directed graph into undirected one to allow bi-directional information flow.

Training objective

L-layer Graph Isomorphism 
Network (GIN)

Reconstructed 
Adjacency Matrix

Reconstructed 
Operation Matrix
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Pretrained Embeddings for Architecture Search
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 RL, BO

We use reinforcement learning (RL) and Bayesian optimization (BO) as two representative search algorithms.

• RL: State: pretrained embeddings. Policy Net: LSTM. Reward: Validation accuracy

• BO: Surrogate: 2-Layer MLP (instead of GP).  Acquisition function: EI. 

• Output top-K architectures in each round of search and optimize the policy/surrogate iteratively  
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• Three commonly used NAS search spaces: NAS-Bench-101, NAS-Bench-201, and the DARTS search space.

• We compare arch2vec with two baselines: Graph Autoencoders (GAE) and Variational Graph Autoencoders 
(VGAE) under three metrics:

Pre-training Performance

• Reconstruction Accuracy: how accurate the reconstructed network architectures are.

• Validity: how often the generated architectures are valid graphs.

• Uniqueness: how many generated valid architectures are unique. 
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• We compare the predictive performance of the 
pretrained embeddings and supervised 
embeddings. This metric measures how well the 
embeddings can predict the performance of the 
corresponding architectures.

• We train a Gaussian Process model with 250 
sampled data to predict all data and report the 
results across 10 different seeds. We use RMSE and 
the Pearson correlation coefficient to evaluate 
points with test accuracy larger than 0.8.

Understanding Pre-trained Embeddings (1)

Pretrained 
Embeddings
(arch2vec)

Supervised 
Embeddings

The RMSE and Pearson’s r are: 0.038±0.025 / 0.53±0.09 
for supervised embeddings, and 0.018±0.001 / 0.67

±0.02 for arch2vec. 
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• We compare the distribution of L2 distance 
between architecture pairs by edit distance, 
measured by 1,000 architectures sampled in a long 
random walk with 1 edit distance apart from 
consecutive samples.

• The L2 distance of pretrained embeddings grows 
monotonically with increasing edit distance. 

• This observation indicates that the pretrained 
embeddings are able to better capture the 
structural information of neural networks, and thus 
make similar architectures clustered better.

Understanding Pre-trained Embeddings (2) 

Pretrained 
Embeddings
(arch2vec)

Supervised 
Embeddings
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• We visualize the latent spaces learned by arch2vec 
and its supervised learning counterpart in 
2-dimensional space. 

• Compared to supervised embeddings, pretrained 
embeddings span the whole latent space, and 
architectures with similar accuracies are clustered 
and distributed more smoothly in the latent space.

• Conducting architecture search on such smooth 
performance surface is much easier and is hence 
more efficient.

Understanding Pre-trained Embeddings (3) 

Latent space 2D visualization comparison between 
arch2vec (left) and supervised architecture representation 

learning (right). Color encodes test accuracy.
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Understanding Pre-trained Embeddings (4) 

Pretrained 
Embeddings

(edit distances 
between adjacent 

architectures are 4, 
6, 1, 5, 1, 1, 1, 5, 2, 

3, 2, 4, 2, 5, 2;)

Supervised 
Embeddings 

(edit distances 
between adjacent 
architectures are 
8, 6, 7, 7, 9, 8, 11, 
11, 6, 10, 10, 11, 

10, 11, 9)
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Understanding Pre-trained Embeddings (4) 

NAS-Bench-101: Towards Reproducible Neural Architecture Search. Ying et al. ICML 2019

• The locality around the global maximum as 
well and the peak also has a coarse-grained 
width of about 6

■ The RWA is nearly 0 during the 
joint optimization
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Architecture Search Performance on NAS-Bench-101

• BOHB and RE are two best-performing search 
methods using discrete encoding.

• However, they perform slightly worse than 
supervised architecture representation 
learning.

• arch2vec considerably outperforms its 
supervised counterpart and the discrete 
encoding after 50,000 wall clock seconds.
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Architecture Search Performance on NAS-Bench-201

• Searching with arch2vec consistently outperforms other approaches on all the three datasets in 
NAS-Bench-201, leading to better validation and test accuracy as well as reduced variability.
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Architecture Search Performance on DARTS



Drawback of Structure-aware Encoding
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Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

Encode structures of them will result in the same embedding located in different regions in the latent space.

Instead, encoding computation contributes to an encoding space with respect to the actual performance of 
the neural networks. 

Two neural networks below with different structures represent the same computation: sin(x)2 + sin(x)2.



Computation-aware Encoding: Path-based Encoding

29

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

Encoding

Path#1 Path#2 Path#3 Path#4
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Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

• Maps neural networks with different 
structures but the same computation to the 
same encoding.

Pros

Cons

• Scales exponentially without truncation but 
causes information loss with truncation.

• Shows worse generalization performance in 
outside search space compared to adjacency 
matrix-based encoding.

Computation-aware Encoding: Path-based Encoding



31

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

Computation-aware Encoding: D-VAE

Directly learning the generative model based on a single architecture is not trivial.



Our Proposed Method: CATE 
(Computation-Aware Transformer-based Encoding)
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• CATE takes paired computationally similar 
architectures as its input.

• Similar to BERT, CATE trains a 
Transformer-based model using the masked 
autoencoding (MAE) objective.

• Each input architecture pair is corrupted by 
replacing a fraction of their operators with a 
special [MASK] token.

• The model is trained to predict those 
masked operators from the corrupted 
architecture pair.
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Why Pairwise Pre-training

Language Modeling Architecture Encoding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL-HLT 2019

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> Conv 1x1 -> Max Pool -> …

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> ? -> Max Pool -> ...

● Challenge: unlike LM, each prediction is 
uniformly distributed

● Solution: condition on pairwise 
computationally similar architectures



Offline Architecture Pair Sampling
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● Sort the architectures based on their computational attributes P (e.g. number of parameters, FLOPs).

● Use a sliding window for each architecture x
i 
and its neighborhood r(x

i
 ) = {y : |P(x

i
)− P(y)| < δ}, where 

δ is a hyperparameter for the pairwise computation constraint.

● Finally, we randomly select K distinct architectures Y = {y
1
, . . . , y

K
}, x

i
 not ∈ Y, Y ⊂ r(x

i
) within the 

neighborhood to compose K architecture pairs {(x
i
, y

1
 ), . . . ,(x

i
, y

K
)} for architecture x

i

● We use δ = 1e6, 2e6, 4e6, 8e6, K = 1, 2, 4, 8 in our experiments.



Attention Mask
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Why:
● Encode long range dependency of different operations beyond adjacency matrix
● Together with MLM, encode both local and global computation information
● Important for encodings to be generalized to outside search space beyond the training search space



Pairwise Pre-training Scheme
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CATE encodes computationally similar 
architecture pairs through two Transformers 
with shared parameters.



Pairwise Pre-training Scheme
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The two individual encodings are then concatenated, 
and the concatenated encoding is fed into another 
Transformer with a cross-attention encoder to 
encode the joint information of the architecture pair.



Experimental Setup

Compare CATE with 11 structure-aware and computation-aware architecture encoding schemes:
 
● One-hot/Categorical/Continuous adjacency matrix-based encoding (3)
● One-hot/Categorical/Continuous path-based encoding (3) and their truncated counterparts (3)
● D-VAE
● arch2vec

Three major encoding-dependent NAS subroutines:

● Sample random architecture subroutine: random search (RS)
● Perturb architecture subroutine: regularized evolution (REA), local search (LS)
● Train predictor model subroutine: neural predictor, BO with GP, BO with DNGO
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Comparison between CATE and other Encoding Schemes
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Comparison between CATE and other NAS Methods

40
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● Strong computation locality (i.e. small δ) leads to better results

● Capturing long-range dependency helps preserve computation information in the encodings

Hyperparameter Choices



Generalization to Outside Search Space

42

● Better generalization when adapting to outside search space
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Recall this Figure

Search 
Algorithm

Search 
Space

Performance 
Estimation 

Strategy

Sampled 
Architecture a

Performance 
Estimation of a

Architecture 
Embedding

In the following, I talk about our research on speedy performance estimation.

EA, RL, BO, NP
(Single-Fidelity) Early Stopping

Bandit-based,
Learning Curve Extrapolation
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NAS-Bench-x11 and the Power of Learning Curves [NeurIPS’ 21]

● A technique to create surrogate NAS benchmarks that include full training information for each 
architecture, including train/validation/test loss and accuracy learning curves

● Allow researchers to easily develop multi-fidelity NAS algorithms



Roadmap

• Generating Learning Curves
• Evaluation
• The Power of Learning Curves



Generating Learning Curves

Goal: given architecture encoding, predict a distribution

Generating realistic noise is critical
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Two-part technique

(1) Predict mean LC (2) Predict noise



(1) Predicting the mean learning curves



(1) Predicting the mean learning curve

● SVD helps to reduce the noise
● k=6 is the sweet spot where the compression function minimizes reconstruction error without 

overfitting the noise of individual learning curves

• Compress the 
learning curves from 
the training set via 
SVD

• Predict only the top 
k principal 
components
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(2) Noise Modeling

• Assume the noise comes from an isotropic 
Gaussian distribution 

○ The noise distribution is the same for 
all architectures
■ a simple sample standard deviation 

statistic (STD)
■ a Gaussian kernel density estimation 

(GKDE) model trained on residuals to 
create a multivariate KDE

○ For each architecture, the noise in a 
small window of epochs are i.i.d.
■ a model trained on estimate the 

distribution of noise over a window of 
epochs
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Surrogate Selection

• Full ablation study on 18 combinations {SVD, VAE}, {LGB, XGB, 
MLP}, {GKDE, STD, Sliding Window}

• SVD-LGB-GKDE archives the best performance

• Therefore, we use it as the surrogate predictor to extrapolate the 
learning curves

Coefficient of determination: R2

Kendall Tau rank correlation: KT

Kullback Leibler divergence: KL
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The Power of Learning Curve Extrapolation

● Propose a simple learning curve extrapolation (LCE) framework to speed-up NAS
● Extrapolator candidates: 

○ Model-free: 
■ Weighted Probabilistic Modeling (WPM): using MCMC to sample the most promising fit

○ Model-based:
■ Learning Curve Support vector regressor (LcSVR) 
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LCE Applied to a Single-Fidelity 

● Solid line: Best sampling-based NAS methods (e.g. BANANAS, LS, REA)
● Dashed line: Further improvement via LcSVR or WPM
● Consistent improvement across all search spaces
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Summary of my research on NAS
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Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019
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For more detailed information and codes, please refer to:

arch2vec [NeurIPS’ 20]: https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec

 CATE [ICML’ 21]: https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

NAS-Bench-x11 [NeurIPS’ 21]: https://arxiv.org/abs/2111.03602
https://github.com/automl/nas-bench-x11

https://github.com/automl/NASLib

Papers and Codes

https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec
https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

