
New Insights in Neural Architecture Search: From Architecture
Embeddings to Learning Curve Extrapolations

1

Shen Yan
Michigan State University

Dec 3, 2021

Outline

1

● Background of NAS

○ Search Space and Architecture Encodings

○ Search Algorithms and Performance Estimations

● A Study on Neural Architecture Representations

○ Why Decouples Architecture Representations and Search Algorithms

○ Visualizations and Analysis

○ From Encoding Structures of Neural Networks to Computations

● Speedy Performance Estimation via Learning Curve Extrapolation

○ Create a Multi-Fidelity Surrogate Benchmark for Evaluating Anytime NAS algorithms

○ Speedy Estimations via Partial Curve Extrapolations

Neural Architecture Search (NAS) Pipeline

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

3

Search Space

Set of Operations:

• Identity
• 3x3 convolution
• 1x1 convolution
• 3x3 max pooling
• skip connection

Search
Space

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, Frank Hutter., NAS-Bench-101: Towards Reproducible Neural Architecture Search, JMLR 2019

4

5

Search Algorithm + Performance Evaluation

Search
Space

a ：

Search
Algorithm

e.g. Random Search, Evolution,
Reinforcement Learning, Bayesian
Optimization, One-shot (supernet)

6

Search Algorithm + Performance Evaluation

Search
Space

Performance of a

a ：

Performance
Evaluation

Strategy

Accuracy, FLOPs,
Hardware-related metrics

e.g., latency, power consumption

Search
Algorithm

7

Search Algorithm + Performance Evaluation

Search
Algorithm

Search
Space

Performance of a

a ：

Performance
Evaluation

Strategy

Accuracy, FLOPs,
Hardware-related metrics

e.g., latency, power consumption

8

Recall this Figure

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

● Supernet-based training optimizes search space and search algorithm together

● The optimization of the architecture representations are guided by the accuracies
of architectures selected by the search strategies

● What if the accuracies are bad at the beginning (e.g. cool-start)?

From the Classic NAS Framework

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

9

Evolution (EA),
Reinforcement Learning (RL),
Bayesian Optimization (BO),

Gradient Descent (GD),
Neural Predictor (NP)

Search Space
Design and Partitioning

Weight Sharing,
Lower Fidelity Estimates,

Bandit-based,
Learning Curve Extrapolation

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

To a Study on Architecture Embeddings

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

10

Architecture
Embedding

In the following, I discuss about our research on decoupling neural network representation learning
and its downstream search, as well as the effect of architecture representations on the overall
performance of NAS.

11

arch2vec and CATE

CATE [ICML’ 21]

arch2vec is a structure-aware unsupervised learning-based
architecture encoding method that decouples architecture
representation learning and architecture search into two
separate processes.

arch2vec [NeurIPS’ 20]

Variational
Auto

Encoder

CATE is a computation-aware architecture encoding
method that encodes computations instead of
structures of neural architectures via a
transformer-based encoder.

12

Recap: Adjacency Matrix-based Encoding

Adjacency
Matrix

Operation
Matrix

Encoding

Encode operations

Encode connections
between operations

 The size of the adjacency matrix grows quadratically as search space scales up, making the
downstream architecture search much less efficient.

Recap: Learning-based Embeddings

Different Types of Architecture Encoders such as LSTM, MLP, and GCN

13

RNN

14

Why Learning-based Embeddings

Adjacency Matrix-based Encoding Learning-based Embeddings

Adjacency
Matrix

Operation
Matrix

Learned architecture embeddings
in the Low-dimensional latent space

High-dimensional & discrete search
space

Architecture
Encoder

Conducting neural architecture search on such
low-dimensional continuous space is much easier and is
hence more efficient.

15

• Architecture embeddings and search algorithms are jointly optimized in a supervised manner, guided by
the accuracies of architectures selected by the search strategies.

Drawback of Existing Learning-based Embedding Methods

Search
Algorithm

Search
Space

Architec
ture

Encoder
Decoder

Performance
Estimation

Strategy

Decoded
Architecture a

Architecture embeddings and search strategies are
jointly optimized in a supervised manner

Supervised Embeddings
Validation Accuracy of a

16

• We propose arch2vec, a simple yet effective unsupervised architecture representation learning method for
neural architecture search.

• Decouple architecture embedding learning and architecture search into two separate processes.

Our Proposed Method: arch2vec

Search
Algorithm

Search
Space

Variational
Auto

Encoder

Performance
Estimation

Strategy

Decoded
Architecture a

Pretrained Embeddings

Pre-training architecture embeddings in an
unsupervised manner

Validation
Accuracy of a

17

Variational Graph Isomorphism Autoencoder

Encoder

Decoder

Let A denote Adjacency Matrix, X denote Operation Matrix.

Augment A as to transfer original directed graph into undirected one to allow bi-directional information flow.

Training objective

L-layer Graph Isomorphism
Network (GIN)

Reconstructed
Adjacency Matrix

Reconstructed
Operation Matrix

18

Pretrained Embeddings for Architecture Search

Search
Algorithm

Pretrained Embeddings

Performance
Estimation

Strategy

Decoded
Architecture a

Validation
Accuracy of a

 RL, BO

We use reinforcement learning (RL) and Bayesian optimization (BO) as two representative search algorithms.

• RL: State: pretrained embeddings. Policy Net: LSTM. Reward: Validation accuracy

• BO: Surrogate: 2-Layer MLP (instead of GP). Acquisition function: EI.

• Output top-K architectures in each round of search and optimize the policy/surrogate iteratively

19

• Three commonly used NAS search spaces: NAS-Bench-101, NAS-Bench-201, and the DARTS search space.

• We compare arch2vec with two baselines: Graph Autoencoders (GAE) and Variational Graph Autoencoders
(VGAE) under three metrics:

Pre-training Performance

• Reconstruction Accuracy: how accurate the reconstructed network architectures are.

• Validity: how often the generated architectures are valid graphs.

• Uniqueness: how many generated valid architectures are unique.

20

• We compare the predictive performance of the
pretrained embeddings and supervised
embeddings. This metric measures how well the
embeddings can predict the performance of the
corresponding architectures.

• We train a Gaussian Process model with 250
sampled data to predict all data and report the
results across 10 different seeds. We use RMSE and
the Pearson correlation coefficient to evaluate
points with test accuracy larger than 0.8.

Understanding Pre-trained Embeddings (1)

Pretrained
Embeddings
(arch2vec)

Supervised
Embeddings

The RMSE and Pearson’s r are: 0.038±0.025 / 0.53±0.09
for supervised embeddings, and 0.018±0.001 / 0.67

±0.02 for arch2vec.

21

• We compare the distribution of L2 distance
between architecture pairs by edit distance,
measured by 1,000 architectures sampled in a long
random walk with 1 edit distance apart from
consecutive samples.

• The L2 distance of pretrained embeddings grows
monotonically with increasing edit distance.

• This observation indicates that the pretrained
embeddings are able to better capture the
structural information of neural networks, and thus
make similar architectures clustered better.

Understanding Pre-trained Embeddings (2)

Pretrained
Embeddings
(arch2vec)

Supervised
Embeddings

22

• We visualize the latent spaces learned by arch2vec
and its supervised learning counterpart in
2-dimensional space.

• Compared to supervised embeddings, pretrained
embeddings span the whole latent space, and
architectures with similar accuracies are clustered
and distributed more smoothly in the latent space.

• Conducting architecture search on such smooth
performance surface is much easier and is hence
more efficient.

Understanding Pre-trained Embeddings (3)

Latent space 2D visualization comparison between
arch2vec (left) and supervised architecture representation

learning (right). Color encodes test accuracy.

23

Understanding Pre-trained Embeddings (4)

Pretrained
Embeddings

(edit distances
between adjacent

architectures are 4,
6, 1, 5, 1, 1, 1, 5, 2,

3, 2, 4, 2, 5, 2;)

Supervised
Embeddings

(edit distances
between adjacent
architectures are
8, 6, 7, 7, 9, 8, 11,
11, 6, 10, 10, 11,

10, 11, 9)

24

Understanding Pre-trained Embeddings (4)

NAS-Bench-101: Towards Reproducible Neural Architecture Search. Ying et al. ICML 2019

• The locality around the global maximum as
well and the peak also has a coarse-grained
width of about 6

■ The RWA is nearly 0 during the
joint optimization

25

Architecture Search Performance on NAS-Bench-101

• BOHB and RE are two best-performing search
methods using discrete encoding.

• However, they perform slightly worse than
supervised architecture representation
learning.

• arch2vec considerably outperforms its
supervised counterpart and the discrete
encoding after 50,000 wall clock seconds.

26

Architecture Search Performance on NAS-Bench-201

• Searching with arch2vec consistently outperforms other approaches on all the three datasets in
NAS-Bench-201, leading to better validation and test accuracy as well as reduced variability.

27

Architecture Search Performance on DARTS

Drawback of Structure-aware Encoding

28

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

Encode structures of them will result in the same embedding located in different regions in the latent space.

Instead, encoding computation contributes to an encoding space with respect to the actual performance of
the neural networks.

Two neural networks below with different structures represent the same computation: sin(x)2 + sin(x)2.

Computation-aware Encoding: Path-based Encoding

29

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

Encoding

Path#1 Path#2 Path#3 Path#4

30

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

• Maps neural networks with different
structures but the same computation to the
same encoding.

Pros

Cons

• Scales exponentially without truncation but
causes information loss with truncation.

• Shows worse generalization performance in
outside search space compared to adjacency
matrix-based encoding.

Computation-aware Encoding: Path-based Encoding

31

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

Computation-aware Encoding: D-VAE

Directly learning the generative model based on a single architecture is not trivial.

Our Proposed Method: CATE
(Computation-Aware Transformer-based Encoding)

32

• CATE takes paired computationally similar
architectures as its input.

• Similar to BERT, CATE trains a
Transformer-based model using the masked
autoencoding (MAE) objective.

• Each input architecture pair is corrupted by
replacing a fraction of their operators with a
special [MASK] token.

• The model is trained to predict those
masked operators from the corrupted
architecture pair.

33

Why Pairwise Pre-training

Language Modeling Architecture Encoding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL-HLT 2019

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> Conv 1x1 -> Max Pool -> …

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> ? -> Max Pool -> ...

● Challenge: unlike LM, each prediction is
uniformly distributed

● Solution: condition on pairwise
computationally similar architectures

Offline Architecture Pair Sampling

34

● Sort the architectures based on their computational attributes P (e.g. number of parameters, FLOPs).

● Use a sliding window for each architecture x
i
and its neighborhood r(x

i
) = {y : |P(x

i
)− P(y)| < δ}, where

δ is a hyperparameter for the pairwise computation constraint.

● Finally, we randomly select K distinct architectures Y = {y
1
, . . . , y

K
}, x

i
 not ∈ Y, Y ⊂ r(x

i
) within the

neighborhood to compose K architecture pairs {(x
i
, y

1
), . . . ,(x

i
, y

K
)} for architecture x

i

● We use δ = 1e6, 2e6, 4e6, 8e6, K = 1, 2, 4, 8 in our experiments.

Attention Mask

35

Why:
● Encode long range dependency of different operations beyond adjacency matrix
● Together with MLM, encode both local and global computation information
● Important for encodings to be generalized to outside search space beyond the training search space

Pairwise Pre-training Scheme

36

CATE encodes computationally similar
architecture pairs through two Transformers
with shared parameters.

Pairwise Pre-training Scheme

37

The two individual encodings are then concatenated,
and the concatenated encoding is fed into another
Transformer with a cross-attention encoder to
encode the joint information of the architecture pair.

Experimental Setup

Compare CATE with 11 structure-aware and computation-aware architecture encoding schemes:

● One-hot/Categorical/Continuous adjacency matrix-based encoding (3)
● One-hot/Categorical/Continuous path-based encoding (3) and their truncated counterparts (3)
● D-VAE
● arch2vec

Three major encoding-dependent NAS subroutines:

● Sample random architecture subroutine: random search (RS)
● Perturb architecture subroutine: regularized evolution (REA), local search (LS)
● Train predictor model subroutine: neural predictor, BO with GP, BO with DNGO

38

Comparison between CATE and other Encoding Schemes

39

Comparison between CATE and other NAS Methods

40

41

● Strong computation locality (i.e. small δ) leads to better results

● Capturing long-range dependency helps preserve computation information in the encodings

Hyperparameter Choices

Generalization to Outside Search Space

42

● Better generalization when adapting to outside search space

43

Recall this Figure

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

Architecture
Embedding

In the following, I talk about our research on speedy performance estimation.

EA, RL, BO, NP
(Single-Fidelity) Early Stopping

Bandit-based,
Learning Curve Extrapolation

44

NAS-Bench-x11 and the Power of Learning Curves [NeurIPS’ 21]

● A technique to create surrogate NAS benchmarks that include full training information for each
architecture, including train/validation/test loss and accuracy learning curves

● Allow researchers to easily develop multi-fidelity NAS algorithms

Roadmap

• Generating Learning Curves
• Evaluation
• The Power of Learning Curves

Generating Learning Curves

Goal: given architecture encoding, predict a distribution

Generating realistic noise is critical

47

Two-part technique

(1) Predict mean LC (2) Predict noise

(1) Predicting the mean learning curves

(1) Predicting the mean learning curve

● SVD helps to reduce the noise
● k=6 is the sweet spot where the compression function minimizes reconstruction error without

overfitting the noise of individual learning curves

• Compress the
learning curves from
the training set via
SVD

• Predict only the top
k principal
components

50

(2) Noise Modeling

• Assume the noise comes from an isotropic
Gaussian distribution

○ The noise distribution is the same for
all architectures
■ a simple sample standard deviation

statistic (STD)
■ a Gaussian kernel density estimation

(GKDE) model trained on residuals to
create a multivariate KDE

○ For each architecture, the noise in a
small window of epochs are i.i.d.
■ a model trained on estimate the

distribution of noise over a window of
epochs

51

Surrogate Selection

• Full ablation study on 18 combinations {SVD, VAE}, {LGB, XGB,
MLP}, {GKDE, STD, Sliding Window}

• SVD-LGB-GKDE archives the best performance

• Therefore, we use it as the surrogate predictor to extrapolate the
learning curves

Coefficient of determination: R2

Kendall Tau rank correlation: KT

Kullback Leibler divergence: KL

52

The Power of Learning Curve Extrapolation

● Propose a simple learning curve extrapolation (LCE) framework to speed-up NAS
● Extrapolator candidates:

○ Model-free:
■ Weighted Probabilistic Modeling (WPM): using MCMC to sample the most promising fit

○ Model-based:
■ Learning Curve Support vector regressor (LcSVR)

53

LCE Applied to a Single-Fidelity

● Solid line: Best sampling-based NAS methods (e.g. BANANAS, LS, REA)
● Dashed line: Further improvement via LcSVR or WPM
● Consistent improvement across all search spaces

54

Summary of my research on NAS

Search
Algorithm

Search
Space

Performance
Estimation

Strategy

Sampled
Architecture a

Performance
Estimation of a

Architecture
Embedding

EA, RL, BO, NP
(Single-Fidelity)

GD (Weight-Sharing)

Early Stopping
Bandit-based,

Learning Curve Extrapolation

arch2vec,
CATE

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, Neural Architecture Search: A Survey, JMLR 2019

55

For more detailed information and codes, please refer to:

arch2vec [NeurIPS’ 20]: https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec

 CATE [ICML’ 21]: https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

NAS-Bench-x11 [NeurIPS’ 21]: https://arxiv.org/abs/2111.03602
https://github.com/automl/nas-bench-x11

https://github.com/automl/NASLib

Papers and Codes

https://arxiv.org/abs/2006.06936
https://github.com/MSU-MLSys-Lab/arch2vec
https://arxiv.org/abs/2102.07108
https://github.com/MSU-MLSys-Lab/CATE

